Addendum - Analog Output

Terranova 751 Manual
07-10-08

Page 5 - ANALOG OUTPUTS
 change to:

Voltage $0-10$ volts; 1 volt per 1000 volts
Current 0-10 volts; User Selectable
Linear: 200 microamps per volt to 2000 microamps
Current (amp) $=200^{*} 10^{\wedge}(-6)^{*}$ Vout
Linear: 2 milliamps per volt to 20 milliamps (default)
Current (amp) $=2 * 10^{\wedge}(-3) *$ Vout
Logarithmic: Vout $=$ Log 10 (current in amps) +8
Current $(\mathrm{amp})=10^{\wedge}($ Vout -8$)$

Page 19 - F. Analog Output Range Settings change to:

The Analog Output Range setting is controlled by Jumper JP-7 and DIP Switch S2. The Analog Output signal, 0 to 10 volts DC, is available on pin 12 of the Miscellaneous I/O Connector on the rear panel. There are three User Selectable ranges available:

1. Linear Analog Out: 0-10 volts, 200 microamps per volt to 2000 microamps

Current (amp) $=200^{*} 10^{\wedge}(-6)^{*}$ Vout
2. Linear Analog Out: 0-10 volts, 2 milliamps per volt to 20 milliamps (default)

Current (amp) $=2 * 10^{\wedge}(-3)^{*}$ Vout
NOTE: recommended lower limit for accurate readings is 1% of full scale. For example, on the $200 \mathrm{microamps} /$ volt scale, this would be equivalent to a current reading of 20 microamp.
3. Log Analog Out: Vout $=\log 10$ (current in amps) +8

Current (amp) $=2 * 10^{\wedge}(-3)^{*}$ Vout
Example: Current $=800$ microamps ($8 \times 10-4 \mathrm{amps}$), Vout $=4.903$ volts
See "ADD" below for a Table of Further Examples
To change the range: (after turning off the unit and removing the power cord)

1. Locate Jumper JP-7 on the right side of the main printed circuit board. JP-7 is a black
rectangular component accessible from the top of the unit. The default position is forward ($2 \mathrm{ma} /$ volt). The jumper has 2 female sockets; the base has three male pins.
2. Pull the Jumper upward to remove it from its socket on the printed circuit board.
3. Make sure DIP switch S2-8 is in OFF position
4. Replace the jumper in its new location, toward front panel for $2 \mathrm{~mA} /$ volt, or toward rear panel for $200 \mathrm{uA} / \mathrm{volt}$
5. For logarithmic output, place DIP Switch S2-8 in ON position and place JP-7 in forward position ($2 \mathrm{~mA} / \mathrm{volt}$).

Vout $=\log 10($ current in amps) +8
Current in amps $=10^{\wedge}($ Vout -8$)$

Add this Table:

Vout by Current Decade

V-out
$0.0 \mathrm{v} \quad 0.02$ microamp or less
$1.0 \mathrm{v} \quad 0.1$ microamp (10-7 amp)
$2.0 \mathrm{v} \quad 1.0 \mathrm{microamp}(10-6 \mathrm{amp})$
$3.0 \mathrm{v} \quad 10$ microamp (10-5 amp)
$4.0 \mathrm{v} \quad 100$ microamp ($10-4 \mathrm{amp}$)
$5.0 \mathrm{v} \quad 1$ milliamp (10-3 amp)
$6.0 \mathrm{v} \quad 10$ milliamp (10-2 amp)
$7.0 \mathrm{v} \quad 100$ milliamp (10-1 amp)
8.0 v

1 amp (100 amp)

Example: Vout 200 to 900 microamp
$\frac{\text { V-out }}{4.30 \mathrm{v}} \quad \frac{\text { Ion Pump Current }}{200 \text { micr }}$
$4.30 \mathrm{v} \quad 200$ microamp ($2 \times 10-4 \mathrm{amp}$)
$4.47 \mathrm{v} \quad 300 \mathrm{microamp}(3 \times 10-4 \mathrm{amp})$
$4.60 \mathrm{v} \quad 400 \mathrm{microamp}(4 \times 10-4 \mathrm{amp})$
$4.70 \mathrm{v} \quad 500 \mathrm{microamp}(5 \times 10-4 \mathrm{amp})$
$4.79 \mathrm{v} \quad 600$ microamp ($6 \times 10-4 \mathrm{amp}$)
$4.84 \mathrm{v} \quad 700$ microamp ($7 \times 10-4 \mathrm{amp}$)
$4.90 \mathrm{v} \quad 800$ microamp ($8 \times 10-4 \mathrm{amp}$)
$4.95 \mathrm{v} \quad 900$ microamp ($9 \times 10-4 \mathrm{amp}$

Table: Logarithmic V-out vs. Ion Pump Current
For a convenient reference on logarithm tables:
http://www.sosmath.com/tables/logtable/logtable.html

